Type 1a Supernovae

Matthew LaFountain

Supernova Types

- Classified by absorption lines
- Core Collapse
 - Stripped Core (lb and lc)
 - Ib have lost H layer
 - Ic have lost He layer too
 - Full explosion (II)
- Thermonuclear
 - Type la
 - "Carbon Bomb"

Image: Swinburne Institute of Technology: COSMOS

The progenitor of a Type Ia supernova

Image: Wikimedia Commons

Shall we watch one?

Effects

- Huge energy release
- Ejecta blasted at 5 20 Mm/s
 - (2 6% c)
- No more star

- NOT a "novae"
 - WD accreting slower
 - No Chandrasekhar limit
 - Small H bomb

Why type 1a?

- Bright
 - \circ 10⁴⁴ J (10⁵¹ ergs)
 - M = -19.5 σ ~ 2

mags

• m = 20 at 800 Mpc

- Consistent
 - $\circ ~~ \lesssim 1.44~M_{\odot}$
 - Standard Candle!
 - Not identical

The secret

- Luminosity-Decline Rate Relation
 - Mark Phillips (1993)
 - Brighter explosions last longer than Dimmer ones
 - Comparison #'s from nearby SNe
- 3 methods
 - $\circ \quad \Delta m_{15} \ \rightarrow \\$
 - Multicoloured Light Curve Shapes (MLCS)
 - Stretch Factor

MLCS method

Time

- All converge to the same color
 - De-reddening
- Dimmer SNe are redder
 - Relation gives absolute mag
 - Huzzah!

Plot: Swinburne Institute of Technology: COSMOS

Stretch Factor Method

- Fit slope of exponential dropoff
 - \circ Same shape
- Fit maximum luminosity
 - Huzzah!

Limitations

- $\sigma \lesssim .12$ mags
 - \circ Distance accuracy to ~ 5%
- Rare
 - \circ 1 per ~500 years in MW
 - Need a lot of stars

 $\frac{.19 \pm .09 \, Supernovae}{10^{10} L_{\odot}^{B} \cdot Century}$ (Hamuy & Pinto 1999)

Distances & Targets

- As far as you can resolve
 - \circ m = 20 at 800 Mpc
 - m = 27.7 at 27 Gpc
 - Subaru deep field Ground based
 - m = 31.5 at 158 Gpc (Hubble)
 - Realistically ~1 Gpc
- Need many stars
 - Galaxy clusters

Errors

- Metallicity Dependence
 - Very small
- Errors in the fit (of course)
 - Estimated ~ .05 mags (Saunders+, 2015)
- Different populations
 - 0.121 ± 0.010 mag (Briday+, 2021)

Recent Results

- A BayeSN distance ladder: H0 from a consistent modelling of Type Ia supernovae from the optical to the near-infrared (Dhawan+, 2023)
 - Calibrate 67 Type Ia SNe in the optical and NIR
 - H0 = 74.82 ± 0.97 (Cepheid distances), 70.92 ± 1.14 (TRGB distances)
 - 15% uncertainty reduction from single-band (optical or NIR)

References

https://astronomy.swin.edu.au/cosmos/

Filippenko, A. V., "Optical Spectra of Supernovae", *Annual Review of Astronomy and Astrophysics*, vol. 35, pp. 309–355, 1997. doi:10.1146/annurev.astro.35.1.309.

Khokhlov, A.; Müller, E.; Höflich, P. (1993). "Light curves of Type Ia supernova models with different explosion mechanisms". Astronomy and Astrophysics. 270 (1–2)

Branch (2003), Encyclopedia of Physical Science and Technology (Third Edition)

Garcia-Bellido, Juan. (2004). Modern Cosmology.

Three-Dimensional Simulations of the Deflagration Phase of the Gravitationally Confined Detonation Model of Type Ia Supernovae. Jordan et al., 2007

https://hubblesite.org/contents/news-releases/2016/news-2016-07.html

Briday et al. Accuracy of environmental tracers and consequences for determining the Type Ia supernova magnitude step. In Astronomy & amp; Astrophysics (Vol. 657, p. A22). EDP Sciences. https://doi.org/10.1051/0004-6361/202141160