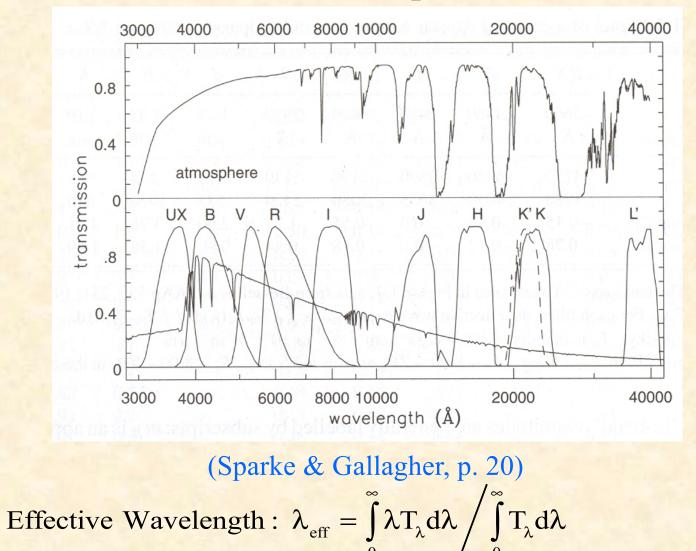


Photometry of Galaxies

- Basics
- Absolute Magnitudes
- Surface Photometry
- Sky Brightness
- Surface Brightness Profiles
- 3D Shapes
- Luminosity Functions
- Global Correlations


Basics of Photometry

- Magnitude System: For two stars or two galaxies : $m_1 - m_2 = -2.5 \log(F_1/F_2)$
- For a particular filter band pass, where T_{λ} is the filter response: $m = -2.5 \log \left(\int_{0}^{\infty} T_{\lambda} F_{\lambda} d\lambda \right) + \text{const.}$

Ex) To calibrate the V band in the Johnson UBV system, we find that for an A0 V star with apparent magnitude V = 0: $F_{\lambda}(5500 \text{ Å}) = 3.75 \text{ x } 10^{-9} \text{ ergs s}^{-1} \text{ cm}^{-2} \text{ Å}^{-1}$ (Allen, AQ, p. 387) So: V = -2.5 log $[F_{\lambda}(5500 \text{ Å})] - 21.065$

Colors: one filter magnitude minus another
Ex) B - V = 0 for A0 V star; bluer stars have negative colors
- colors (e.g., J - K) are defined to be zero for an A0 V star

Filter Bandpasses

1	UX	В	V	R	Ι	J	Н	K	L'
	3660Å	4360Å	5450Å	6410Å	7980Å	1.22µ	1.63µ	2.19µ	3.80µ

Absolute Magnitudes – Galaxies

- Absolute magnitude (M): object's apparent magnitude at 10 pc
 Measure of object's luminosity L (ergs s⁻¹)
- Distance modulus: $m M = 5 \log(d) 5$ (d is distance in pc)
- Need to correct for extinction A (strongly λ dependent): Ex) V - M_V = 5 log(d) - 5 + A_V
- For a high-redshift galaxy, correct for spectral shift in bandpass: Ex) $V - M_V = 5 \log(d) - 5 + A_V + K_V$
- In general, K is called the "K-correction"
 K = k + 2.5 log (1+z)

- k is a function of galaxy type and z (tabulated for different bandpasses in Frei & Gunn, 1994, AJ, 108, 1476)

• $M_V(Sun) = +4.82$ $M_V(Galaxy) = -20.6$

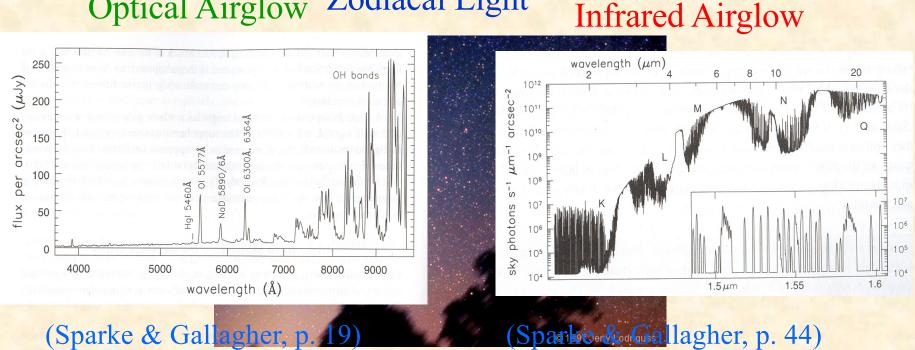
Absolute Bolometric Magnitudes

• Measure of luminosity over entire spectrum:

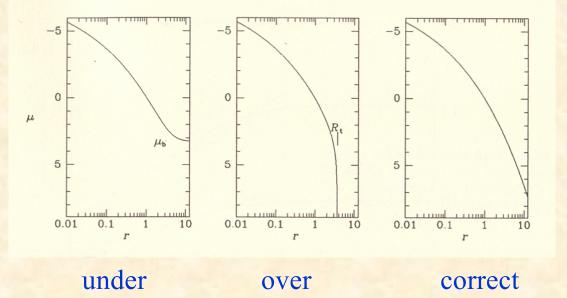
$$M_{bol} = M = -2.5 \log \left(\int_{0}^{\infty} L_{\lambda} d\lambda \right) + const.$$

Bolometric Correction: $BC = M - M_V$ (depends on object's spectrum) BC (Sun) = -0.08

- Some numbers (from Allen's AQ): (O = Sun)
 - ≻ $M_{\odot} = +4.74$
 - > $L_{\odot} = 3.84 \times 10^{33} \text{ ergs s}^{-1}$
 - > L (Galaxy) \approx 3.6 x 10¹⁰ L_O (bolometric)
 - > L_B (Galaxy) $\approx 2.3 \times 10^{10} L_{\odot}$ (B-band)
 - > L_B (Galactic Disk) $\approx 1.9 \times 10^{10} L_{B\odot}$ (B-band)
 - > $\mathcal{M}ass$ (Galactic Disk) $\approx 1 \times 10^{11} \mathcal{M}_{\odot}$ (to R = 8.5 kpc)
 - > $\mathcal{M}/L_{\rm B}$ (Disk) $\approx 5 \mathcal{M}_{\odot}/L_{\rm BO}$

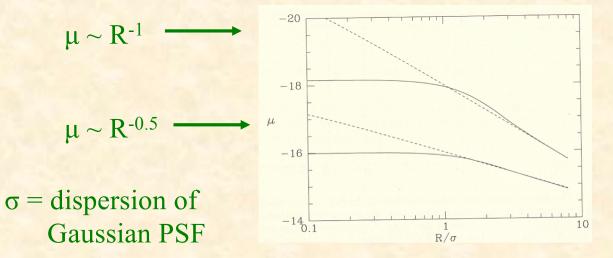

Surface Photometry

- Surface brightness: I (ergs s⁻¹ cm⁻² arcsec⁻²), μ (mag arcsec⁻²)
- Independent of distance (d) to 1st order (neglecting cosmological redshift effects and surface brightness changes)
 - Consider a small patch of a galaxy with uniform brightness, sides of length D, apparent angular length α , at a distance d: $I = \frac{F}{\alpha^2} = \frac{L/4\pi d^2}{(D/d)^2} = \frac{L}{4\pi D^2}$
 - For a flat disk, I increases as 1/cos(i) (i = inclination)
- Measured I depends on resolution of image
- Surface brightness profile: change in I with distance from center along major axis of image
 - Often measured by fitting elliptical isophotes.
 - Strongly affected by subtraction of night sky emission.
 - Core affected by PSF of telescope and "seeing".

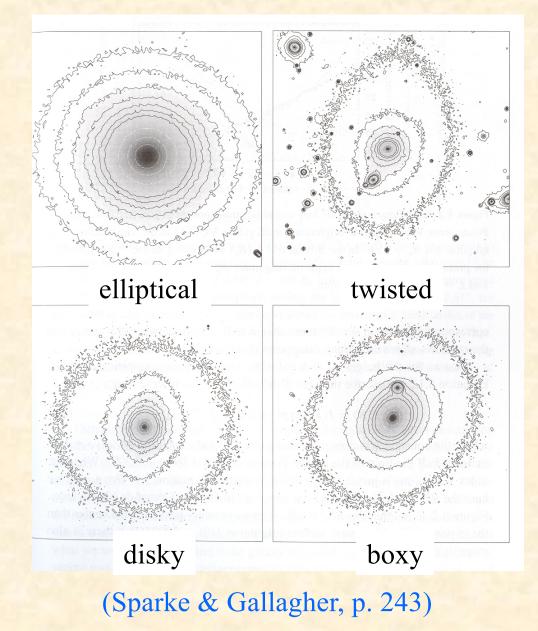

Sky Brightness

- For a dark sky (from the ground): $\mu_{\rm B} \approx 23$, $\mu_{\rm R} \approx 21$ mag arcsec⁻²
- Contributions (decreasing importance in the optical): •
 - Zodiacal light: sunlight scattered off interplanetary dust 1)
 - Airglow: emission lines in the upper atmosphere (O I, NaD: UV 2) ionization and recombination, excited OH: $O_3 + H_2O$ reaction)
 - Unresolved Galactic starlight 3)
 - 4) Diffuse extragalactic light

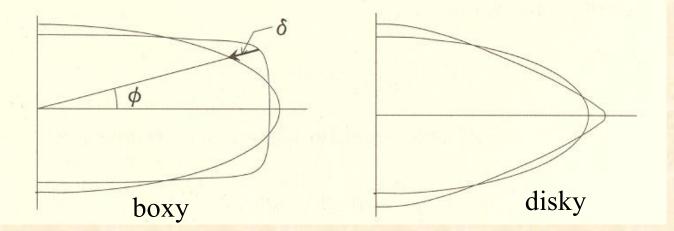
Optical Airglow Zodiacal Light



Effects of error in sky subtraction:


(BM, p. 175)

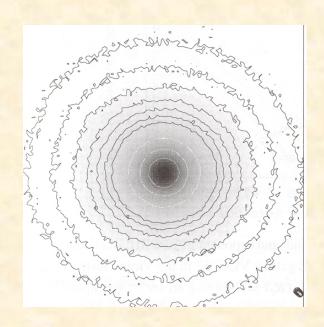
Effects of PSF due to telescope + seeing:



(BM, p. 176)

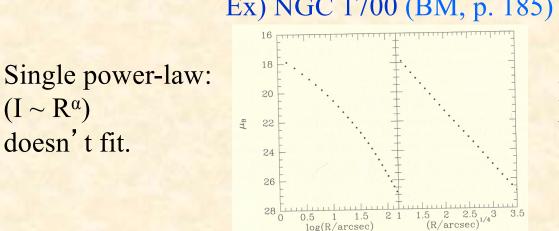
Elliptical Galaxy Isophotes (Contours of equal μ_R)

- Boxy/disky isophotes often characterized by parameter a₄
- Fit elliptical isophotes and then measure δ as fct. of Φ


Express δ as a Fourier series:

$$\delta(\phi) = <\delta> + \sum_{n=1}^{\infty} a_n \cos(n\phi) + \sum_{n=1}^{\infty} b_n \sin(n\phi)$$

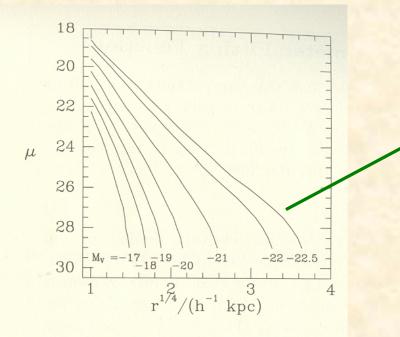
- Observational results: most a_n and b_n are negligible, except a_4
- $a_4/a < 0 \rightarrow boxy$, $a_4/a > 0 \rightarrow disky$ (typical range: -0.02 \rightarrow +0.02)

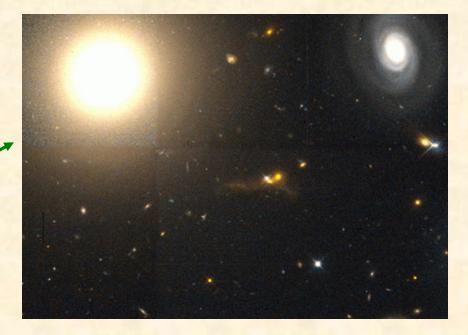

Galaxy Sizes

- Isophotal radius: distance from center at which a particular surface brightness is reached along the semi-major axis
 - De Vaucouleurs radius (R_{25}): R at $\mu_B = 25$
 - Holmberg radius: R at $\mu_B = 26.5$
- Effective radius (Re): radius inside of which ½ of the light is emitted (depends on a model fit to brightness profile)

Ellipticals/Bulges: Surface-Brightness Profiles

- Often fit with the de Vaucouleurs R^{1/4} law: $I(R) = I_e \exp\{-7.67 [(R / R_e)^{1/4} - 1]\}$
- Note this is of the form: $\mu = a bR^{1/4}$ (a and b are consts.) \rightarrow R = angular distance from the center
- $\frac{1}{2}$ of the light is emitted inside R_e if the galaxy is circularly symmetric
- Elliptical galaxies typically have values a_e and b_e \rightarrow R_e = (a_eb_e)^{1/2} (¹/₂ light is inside ellipse with area πR_e^2)

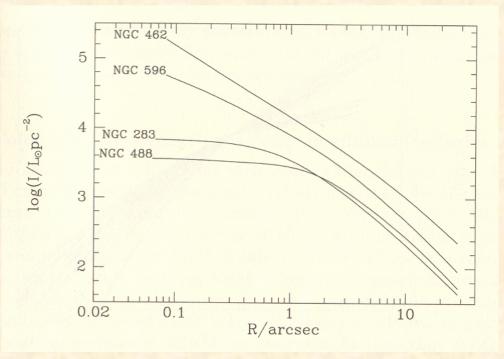



log(R/arcsec)

Ex) NGC 1700 (BM, p. 185)

De Vaucouleurs law works well.

Deviations from $R^{1/4}$ in E's–Function of Luminosity

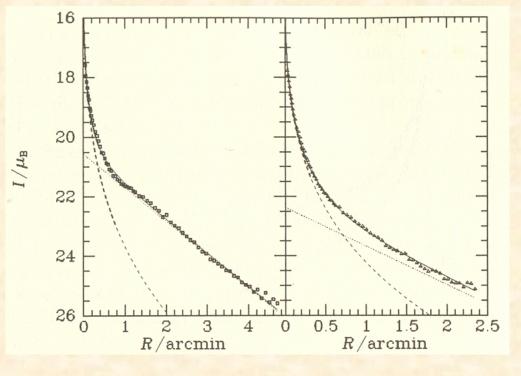


(BM, p. 175)

(HST/WFPC2 image of cD NGC 4881 in the Coma cluster, courtesy STScI)

- Two classes of dwarf Ellipticals (Kormendy & Djorgovski 1989):
 - Compact (M32): at low luminosity end of above graph
 - Diffuse: Best fit by exponential law: $I(R) = I_d \exp(-R/R_d)$ (much flatter than $R^{1/4}$)

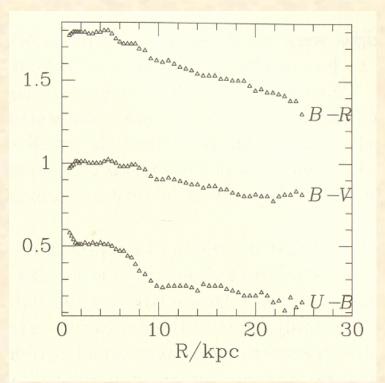
Centers of Ellipticals (using *HST*) Surface brightness shows wide variation inside of 1".


(BM, p. 191)

- Are cuspy profiles evidence for supermassive black holes?
 - Argument: BH's produce cuspy potentials and hence cuspy profiles (Lauer et al. 1991, 1992)

No - black hole masses from kinematics show no correlation with "cuspiness" (Kormendy & Richstone, 1995, ARAA, 33, 585-586)

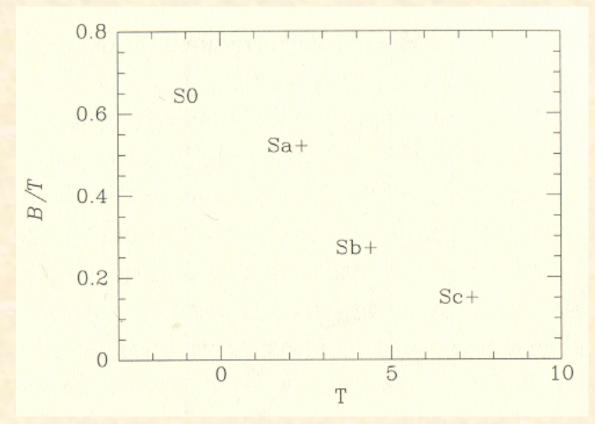
Disks: Surface-Brightness Profiles


- Disks: Exponential law works: I(R) = I_d exp(-R/R_d)
 Most disk galaxies have R_d in the range 1- 10 kpc
- Complications with surface photometry:
 - Bulge overlap, bars, dust lanes, spiral arms, young stars
 - Use red or near-IR if possible.

Combined disk/bulge fit

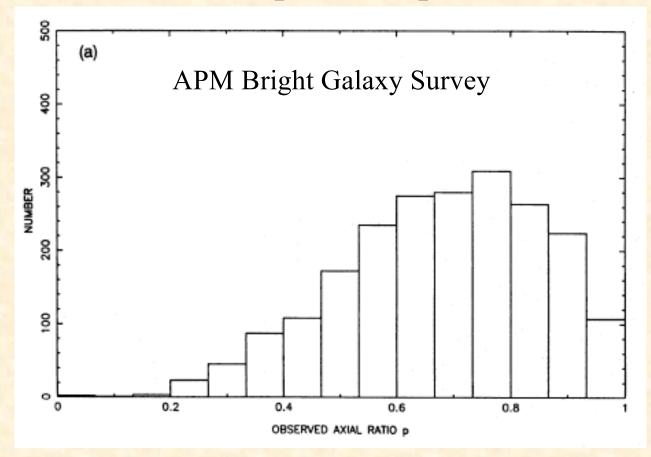
(Binney & Merrifield, p. 216)

Color Gradients – M31

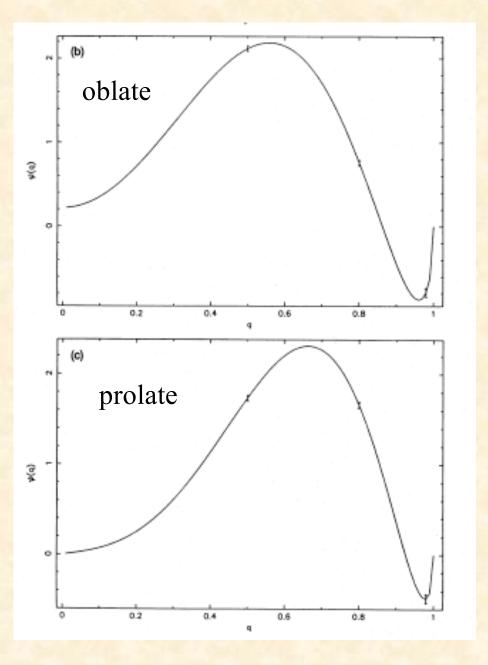

(Binney & Merrifield, p. 224)

- Spirals tend to get bluer with increasing distance from nucleus (as do ellipticals). Some combination of:
 - 1) Increasing # of hot, young stars.
 - 2) Decreasing metallicity.
- Exception: Starburst ("H II") galaxies have rapid ongoing star formation in their nuclei.

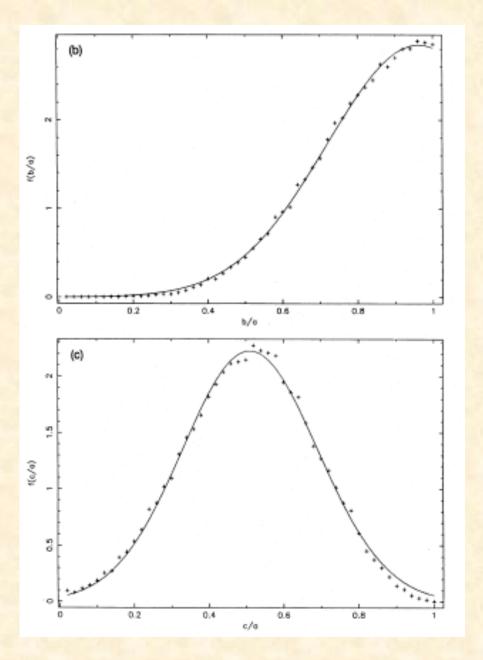
Bulges: Quantitative Correlation with Spiral Type


• Ratio of bulge to total luminosity from fits:

 $B/T = \frac{R_e^2 I_e}{R_e^2 I_e + R_d^2 I_d} = \frac{bulge luminosity}{total luminosity}$


(Binney & Merrifield, p. 220)

True Shapes - Ellipticals

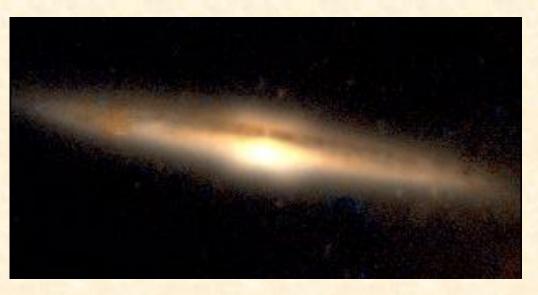


(Lambas et al. 1992, MNRAS, 258, 404)

- Assuming 3 axes of symmetry, are ellipticals oblate (a = b, c < a), prolate (a = b, c > a), or triaxial (a ≠b ≠c)?
- Need statistical studies of a large sample and assume that ellipticals are oriented randomly.

- From observed distribution of axial ratios $\phi(p=b_{obs}/a_{obs})$, one can determine the true distribution for $\Psi(q = c/a)$ for oblate and prolate spheroids (Fall & Frank, 1993, AJ, 88, 1626)
- Both are unrealistic, since they give negative values at large q (spheres)
- Many ellipticals are likely *triaxial*.

(Lambas et al. 1992)

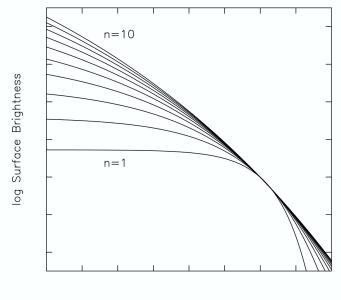

- For triaxials, need to assume an underlying distribution (e.g., Gaussian)
- Ellipticals tend to be more *oblate rather* than *prolate*.
- Luminous E's tend to be more triaxial (i.e., more asymmetric) than fainter ones (Tremblay & Merritt 1996).

Bulges

• Bulges: "true" ellipticity: (major-minor)/major axis = 0 to 0.7

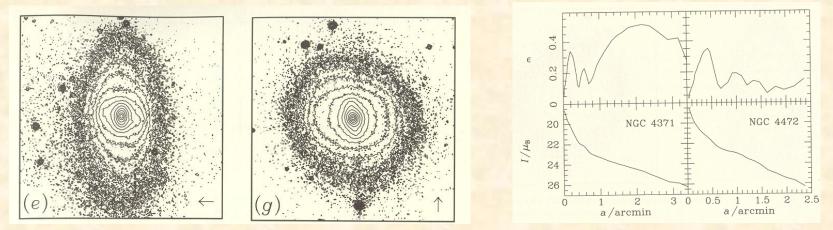
- Flat bulges rotate more rapidly and have shallower brightness profiles → "pseudobulges"
- $-\sim 25\%$ have boxy or even "peanut" appearance.
- Would be seen as roughly elliptical from other angles

NGC 5746


Disks

- Even "face-on disks" can be slightly elliptical (e up to ~ 0.04).
 - could be real or could be influence of spiral structure
- Surface brightness perpendicular to disk: use edge-on galaxies $\rightarrow I(z) = I(R) \exp(-z/z_0)$ ($z_0 = 0.01$ to $0.1R_d$)
- Luminosity density: $j(r,z) = j_0 \exp(-r/r_d) \exp(-|z|/z_0)$ (double exponential)
- Most disks (like MW) have several components:
 Ex) Optical and near-IR photometry of IC 2531 (Wainscoat et al. 1989): 3 components
 - 1) Thick disk, B V = 0.78, $z_0 = r_d/12$
 - 2) Thin disk, B V = -0.04, $z_0 = r_d/96$
 - 3) Dust disk, $z_0 = r_d/48$

Sersic Brightness Profile

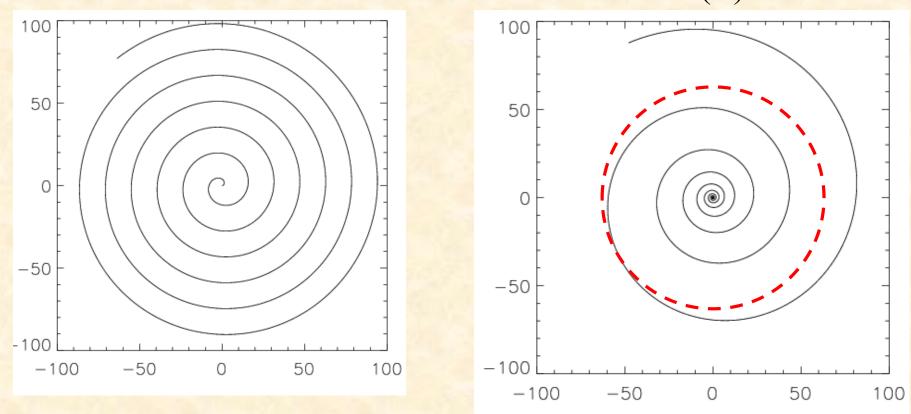

$$I = I_e \exp\{-b_n [(R / R_e)^{1/n} - 1]\}$$

- b_n chosen so that $\frac{1}{2}$ luminosity inside R_e
- $n = 4 \rightarrow$ de Vaucoulers law, $n = 1 \rightarrow$ exponential
- pseudobulges between 1 and 4
- How many free parameters? \rightarrow 3

Bars

• Bars: detected as deviation in ellipticity and bumps in brightness profiles

(Binney & Merrifield, p. 229, 230)


• Vertical structure: difficult to know, since bars can't be detected in edge-on galaxies

• Dynamical simulations: thin bars are unstable; tend to form peanut shapes with vertical dimensions similar to thick disk

• 75% of SBs have inner rings \rightarrow bars, peanut-shaped bulges, and inner rings are somehow dynamically connected

Spirals

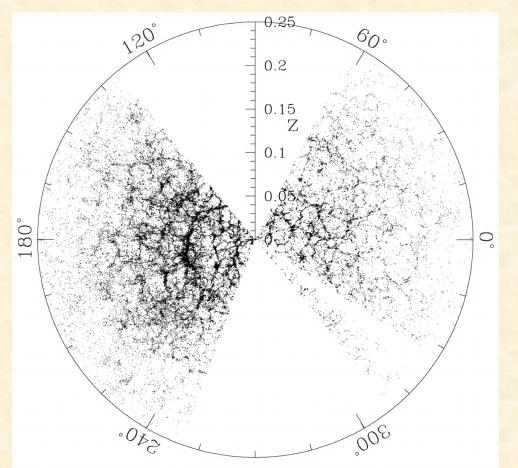
• Tend to be logarithmic in shape: $\theta \sim \ln(R)$ (polar coords.) $\theta \sim R$ $\theta \sim \ln(R)$

Pitch angle (ψ) = angle between arm and tangent to circle at R - ranges from 5° (Sa) to 30° (Sc to Sd)

Spirals

- Bluer than surroundings \rightarrow active star formation
- ~10% are grand design: tend to have a bar and/or outer satellite (M51)
- Kinematics: Spiral arms rotate as if they are "winding up".

How can you tell which side of a spiral galaxy is closer?
→ Take a spectrum to get radial velocities + spiral arms wind



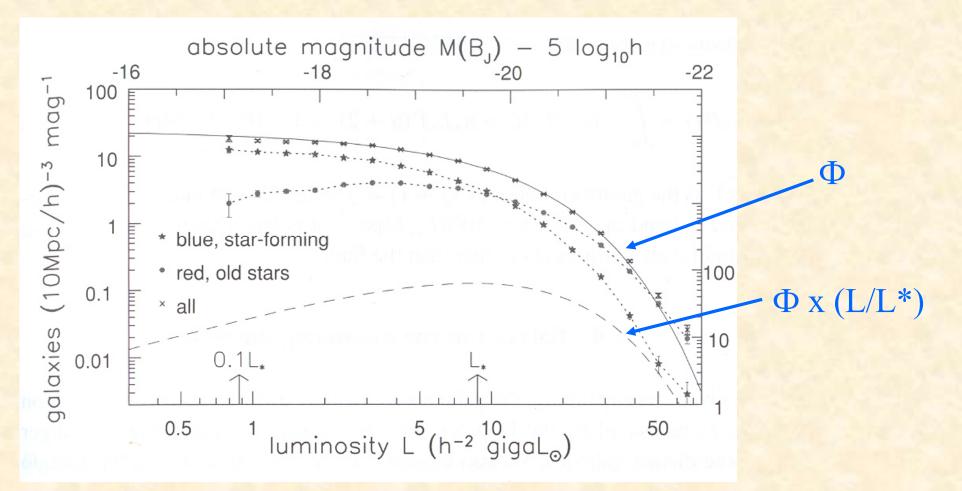
Another way to tell which side is closer

Near side occults bulge (works for more edge-on spirals)

Galaxy Luminosity Functions

(SDSS Wedge (Blanton, et al. 2003, ApJ, 592, 819)

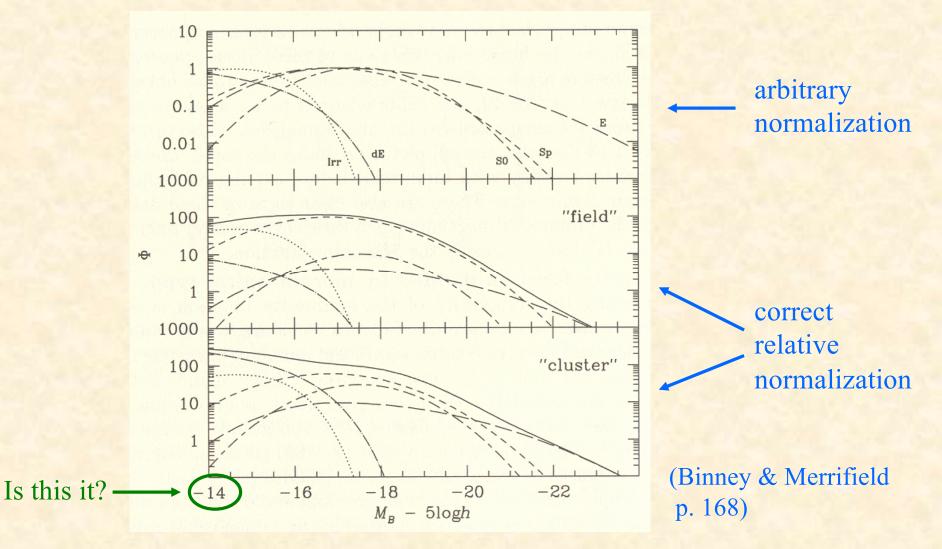
- How do we get the # of galaxies at each luminosity?
- Need imaging + spectroscopic surveys (e.g. SDSS, 2DF)
- Integrate surface brightness \rightarrow flux, z \rightarrow distance, luminosity


Galaxy Luminosity Functions

- Φ (L) dL # of galaxies with luminosities between L and L + dL (or M and M + dM) per Mpc³
- Need to correct for Malmquist bias: can only count galaxies to a limiting magnitude (miss distant, faint galaxies)
- Φ often described by the Schechter Luminosity Function:

$$\Phi(L) = \frac{n^*}{L^*} \left(\frac{L}{L^*}\right)^{\alpha} \exp\left(\frac{-L}{L^*}\right)$$

- $n^* = normalization constant \approx 0.02 h^3 Mpc^{-3}$ (where $h = H_0/100 \text{ km s}^{-1} \text{ Mpc}^{-1} = 0.73$)
- $L^* =$ turnover luminosity at the high end $\approx 9 \times 10^9 \text{ h}^{-2} \text{ L}_{\odot}$
- $\alpha =$ slope at low-luminosity end ≈ -0.4

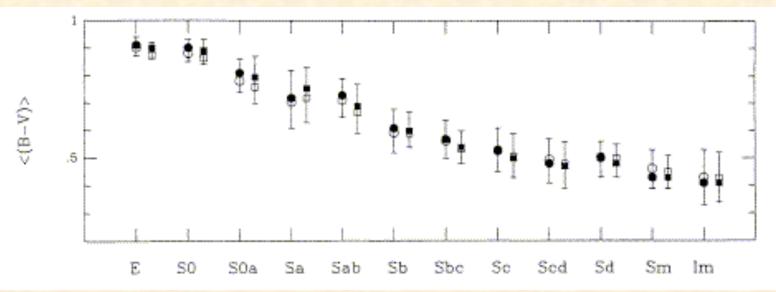

Luminosity Function - Data

(2dF Survey - Sparke & Gallagher, p. 45)

- Giant E's dominate at high end
- Most of the luminosity comes from bright galaxies

Luminosity Functions by Morphological Type

- dE's and Irr's dominate at low luminosities
- Brightest galaxies are giant E's and cD's in centers of clusters
- Spirals are less common in clusters (and their numbers increase with distance from center)


Local Group

Name	Alternate Name	Coordinates RA (1950) Dec	Type	Distance (kpc)	M_V
M31	NGC 224	00 40.0 +40 59	Sb	725	-21.1
Milky Way	Galaxy	$17 \ 42.4 \ -28 \ 55$	Sbc	8	-20.6
M33	NGC 598	$01 \ 31.1 \ +30 \ 24$	Sc	795	-18.9
LMC		$05 \ 24.0 \ -69 \ 48$	Irr	49	-18.1
IC 10		$00 \ 17.7 \ +59 \ 01$	Irr	1250	-17.6
NGC 6822	DDO 209	$19 \ 42.1 \ -14 \ 56$	Irr	540	-16.4
M32	NGC 221	00 40.0 +40 36	dE2	725	-16.4
NGC 205		$00 \ 37.6 \ +41 \ 25$	dE5	725	-16.3
SMC		00 51.0 -73 06	Irr	58	-16.2
NGC 3109	DDO 236	$10 \ 00.8 \ -25 \ 55$	Irr	1260	-15.8
NGC 185		$00 \ 36.2 \ +48 \ 04$	dE3	620	-15.3
IC 1613	DDO 8	$01 \ 02.2 \ +01 \ 51$	Irr	765	-14.9
NGC 147	DDO 3	$00 \ 30.5 \ +48 \ 14$	dE4	589	-14.8
Sextans A	DDO 75	$10 \ 08.6 \ -04 \ 28$	Irr	1450	-14.4
Sextans B	DDO 70	09 57.4 + 05 34	Irr	1300	-14.3
WLM	DDO 221	23 59.4 - 15 45	Irr	940	-14.0
Sagittarius		1 <u>8 51.9 -30 30</u>	dSph/E7	24	-14.0
Fornax		$02 \ 37.8 \ -34 \ 44$	dSph/E3	131	-13.0
Pegasus	DDO 216	$23 \ 26.1 \ +14 \ 28$	Irr	759	-12.7
Leo I	DDO 74	$10 \ 05.8 \ +12 \ 33$	dSph/E3	270	-12.0
Leo A	DDO 69	09 56.5 + 30 59	Irr	692	-11.7
And II		$01 \ 13.5 \ +33 \ 09$	dSph/E3	587	-11.7
And I		$00 \ 43.0 \ +37 \ 44$	dSph/E0	790	-11.7
SagDIG		$19\ 27.9\ -17\ 47$	Irr	1150	-11.0
Antlia		$10 \ 01.8 \ -27 \ 05$	dSph/E3	1150	-10.7
Sculptor		00 57.6 -33 58	dSph/E3	78	-10.7
And III		$00 \ 32.6 \ +36 \ 12$	dSph/E6	790	-10.2
Leo II	DDO 93	$11 \ 10.8 \ +22 \ 26$	dSph/E0	230	-10.2
Sextans		$10 \ 10.6 \ -01 \ 24$	dSph/E4	90	-10.0
Phoenix		$01 \ 49.0 \ -44 \ 42$	Irr	390	- 9.
LGS 3		01 01.2 +21 37	Irr	760	- 9.
Tucana		$22 \ 38.5 \ -64 \ 41$	dSph/E5	900	- 9.0
Carina		06 40.4 -50 55	dSph/E4	87	- 9.1
Ursa Minor	DDO 199	$15 \ 08.2 \ +67 \ 23$	dSph/E5	69	- 8.
Draco	DDO 208	$17 \ 19.2 \ +57 \ 58$	dSph/E3	76	- 8.0

(Binney & Merrifield p. 168)

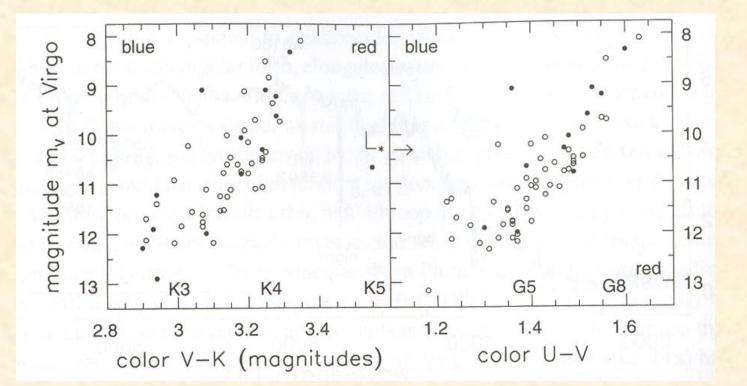
- Many galaxies with low luminosities and low surface brightnesses
- A 3D view can be found at http://www.atlasoftheuniverse.com/localgr.html

Global Correlations: Color vs. Type

(Roberts and Haynes, 1994 ARA&A 32, 115)

Trends:

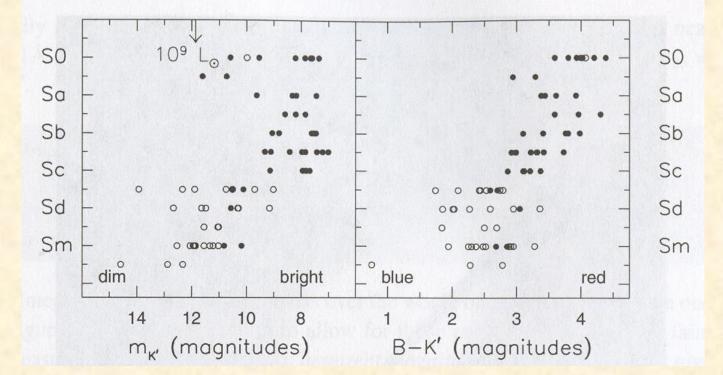
Ellipticals \rightarrow bulges \rightarrow disks


 $red \rightarrow blue$

old average population \rightarrow young

low metallicity \rightarrow high

- Oversimplification; e.g., metallicity in the Galactic bulge decreases with radius (from above solar to below)
- Difficult to separate effects of stellar populations, metallicity, and dust → use spectroscopy


Ellipticals: Color vs. Luminosity

(Sparke & Gallagher, p. 269)

- Brighter ellipticals are redder
- → higher metallicities, rather than older stellar populations (confirmed from spectra of Fe, Mg absorption lines)

Global Correlations (Spirals)

(Galaxies in Ursa Major Group; Sparke & Gallagher, p. 201)

- Earlier types have 1) higher luminosities, 2) higher I_R, 3) redder colors,
 4) lower H I mass, 5) less star formation, and 6) fewer H II regions
 - Due in part to prominence of bulge. (1, 2, 3)
 - Also, less gas available for star formation in the disk at present epoch (3, 4, 5, 6)